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ABSTRACT:  Fussell-Vesely Importance (FVI) is one of the most commonly used importance meas-
ures. It is based on the concept of Minimal Cut Sets (MCSs), and it quantifies the contribution of a 
system component to system failure. In paper (Kvassay et al. 2015), the algorithm for identification of all 
system MCSs based on Direct Partial Logic Derivatives (DPLDs) has been considered. These MCSs are 
then used to compute the FVI. However, the FVI of a system component depends only on MCSs that 
contain the considered component, i.e. it is not necessary to identify all MCSs of the system. This implies 
that it is useful to develop algorithms that will identify not all system MCSs but only those in which a 
specific component occurs. Such algorithms can be used to compute the FVI without a priori knowledge 
of MCSs. In this paper, a new algorithm for this task is proposed. The algorithm is based on a relation 
between DPLDs and MCSs that is also considered in this paper.

of algorithms for identification or generation of 
MCSs of investigated system. These algorithms 
are developed mainly on the basis of applied fault 
trees (Sinnamon & Andrews 1997, Vatn 1992) or 
networks (Emadi & Afrakhte 2014, Rebaiaia & 
Ait-Kadi 2013). Another algorithm for identifica-
tion of system MCSs has been considered in paper 
(Kvassay et al. 2015). This algorithm is based on 
tools of logical differential calculus, and it can be 
used for systems of any type (not only for systems 
presented as networks or for systems described by 
fault trees).

Logical differential calculus has been developed 
for analysis of dynamic properties of logic func-
tions. Direct Partial Logic Derivatives (DPLDs) 
are essential part of this tool (Tapia et al. 1991). 
Their use in reliability analysis has been considered 
in several papers (Zaitseva 2003, Zaitseva 2012, 
Zaitseva et  al. 2015). These papers have showed 
that DPLDs are very appropriate for identification 
of situations in which failure/repair of a system 
component results in system failure/repair. This 
fact has been used to develop algorithms for defin-
ing system boundary states and for calculation of 
some measures that can be used to evaluate system 
reliability.

In this paper, we develop ideas presented in 
paper (Kvassay et al. 2015) to propose an algorithm 
that identifies not all system MCSs but only MCSs 
in which a specified component is presented. Such 
MCSs are useful in computation of FVI of the 
considered component. As a result new method for 
calculation of this IM is developed. This method is 

1 intr oduction

Principal steps in reliability engineering include 
estimation of system reliability and identification 
and quantification of situations which can cause 
system failure. There exist several techniques that 
can be used to solve these tasks. One of them is 
investigation of component influence on system 
activity. This technique is known as importance 
analysis.

Importance analysis uses special measures that 
are referred to as Importance Measures (IMs). 
These measures are used to quantify correlation 
between system failure and failure of its compo-
nents from several points of view (Kuo & Zhu 
2012). One of the most commonly known and the 
most commonly used IMs is Fussell-Vesely Impor-
tance (FVI). This measure estimates contribution 
of a given component to system failure. Calculation 
of this IM is based on a priori knowledge of Mini-
mal Cut Sets (MCSs) of the considered system.

MCSs are one of the key concepts of reliabil-
ity analysis. They represent minimal sets of system 
components whose simultaneous failure results in 
a failure of the system (Kuo & Zhu 2012). MCSs 
are used in fault tree analysis (Lim et  al. 2007), 
in reliability analysis of two terminal networks 
(Gertsbakh & Shpungin 2009), etc. Many papers 
focus on issues related to MCSs. For example, 
special algorithms for reliability analysis of sys-
tems with a huge number of MCSs are considered 
by Cepin (2005), Choi & Cho (2007), Contini & 
Matuzas (2011). Other papers focus on the design 
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based on DPLDs and requires no a priori knowl-
edge of system MCSs.

2  System Structure Function

From reliability point of view, a system can be in 
one of two possible states: functioning or failed. 
These two states can be represented by numbers 1 
and 0. Furthermore, every system consists of one 
or more components that can also be either failed 
(state 0) or functioning (state 1). The dependency 
between states of individual system components 
and system state is defined by the structure func-
tion φ(x) (Zaitseva 2012):

φ(x) = φ(x1, x2,…, xn): {0, 1}n → {0, 1},	 (1)

where n denotes a number of components of the 
system, xi is a variable representing state of the i-th 
system component and x = (x1, x2, …, xn) is vector 
of states of system components (a state vector).

Every system component is characterized by the 
probabilities of:

–	 functioning:

pi = Pr{xi = 1},	 (2)

–	 failure:

qi = Pr{xi = 0}.	 (3)

These probabilities define whether the com-
ponent is available or not, therefore, they are 
also referred to as component availability and 
unavailability.

Using the structure function and availabilities 
(unavailabilities) of individual system components, 
the availability and unavailability of the whole 
system can be computed in the following manner 
(Rausand & Høyland 2004):

A = Pr{φ(x) = 1},	 (4)

U = Pr{φ(x) = 0}.	 (5)

The availability of a system is an important 
characteristic because it can be viewed as a pro-
portion of time during which the system is func-
tioning. However, it does not allow investigating 
which components are the most important for the 
system proper work. For this task, other measures, 
e.g. FVI, have to be used.

In what follows, we will consider a coherent sys-
tem. Such system has two principal assumptions 
for the structure function (Rausand & Høyland 
2004): (a) the structure function (1) is monotone 
(the system component state decrease does not 

improve the system availability), and (b) the system 
components states are independent.

3  System Boundary StateS

The boundary state is an important concept in reli-
ability analysis. We consider the boundary states as 
states for which the change of one system compo-
nent causes the change of a system state. In this 
paper the system failure is considered. Depending 
on the influence of component state change to a 
system failure, two types of boundary states can be 
defined. The first type is a boundary state for which 
system fault depends on the change of a fixed com-
ponent state. These types of boundary states are 
named as exact boundary states. The second type is 
boundary state for which the change of any system 
component state causes change in the system state. 
This type is known as Minimal Cut Sets (MCSs).

3.1  Critical cut vector

Critical cut vectors as exact boundary states have 
been considered in paper (Zaitseva 2003, Kvas-
say et al. 2015). In general, exact boundary states 
represent state vectors at which change of the i-th 
component state from s to s  causes the system per-
formance level change from j to j  (s, s , j,  j ∈ {0, 1}, 
s ≠ s , j ≠ j ). The exact boundary state is defined by 
the exact boundary vector unambiguously.

The exact boundary states for the i-th compo-
nent are calculated based on Direct Partial Logical 
Derivatives (DPLDs) with respect to variable xi. 
The mathematical tool of DPLDs has been pro-
posed in (Zaitseva 2003, Zaitseva 2012, Zaitseva & 
Levashenko 2013) for calculation of exact bound-
ary states of a system. A DPLD with respect to 
variable xi for the structure function (1) permits to 
analyze change of system state from value j to j  
when the i-th component state changes from s to s  
(Tapia et al. 1991):

∂ → ∂ →

=
=

φ
φ φ
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, ( , ) (
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





0   other
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where φ(si, x)  =  φ(x1,…, xi-1, s, xi+1,…, xn); φ( s , 
x) = φ(x1,…, xi-1, s , xi+1,…, xn); (s, s , j,  j ∈ {0, 1}, 
s ≠ s , j ≠ j ).

DPLD (6) allows investigating boundary states 
of a system failure (a system state in this case 
changes from 1 to 0) if  the i-th component skips 
down. Therefore, this derivative allows calculat-
ing exact boundary states for the i-th component. 
These boundary states agree with state vectors of 
the form of x = (x1, x2, …, xi-1, 1 → 0, xi+1, …, xn).
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For example, consider a simple service system 
that has been introduced in paper (Kvassay et al. 
2015). This system consists of three components 
(n  =  3) – infrastructure (component 1), service 
point A (component 2) and service point B (com-
ponent 3). This system can be interpreted by reli-
ability block diagram in Figure  1. The structure 
function of this system can be defined by Table 1 
and components states probabilities are presented 
in Table 2.

Now, determine the exact boundary states of this 
service system for situations in which a failure of 
the first component causes system failure. For this 
purpose, DPLD ∂ → ∂ →φ( ) ( )1 0 1 01x  can be used. 
The values of this derivative are in the first column 
in Table 3. According to this table, there are three 
exact boundary states for the first component. These 
exact boundary states can be presented as critical 
cut vectors: x = (x1, x2, x3) = (1 → 0,0,1) = (0,0,1), 
x = (x1, x2, x3) = (1 → 0,1,0) = (0,1,0) and x = (x1, 
x2, x3) = (1 → 0,1,1) = (0,1,1). Note that, according 
to values of logic derivatives ∂ → ∂ →φ( ) ( )1 0 1 02x  
and ∂ → ∂ →φ( ) ( )1 0 1 03x  presented in Table 3, this 
system has one critical cut vector for the second 

component (x = (x1, x2, x3) = (1,1 → 0,0) = (1,0,0)) 
and one critical cut vector for the third component 
(x = (x1, x2, x3) = (1,0,1 → 0) = (1,0,0)).

DPLDs (6) allow identifying critical cut vectors 
of the system. These vectors agree with non-zero 
values of the derivative. There exist several algo-
rithms for calculation of DPLDs. The parallel one 
has been proposed in paper (Zaitseva et al. 2015). 
For example, the investigation of the influence of 
the first component failure on the fault of the sim-
ple service system (Fig. 1) is performed based on 
DPLD ∂φ(1 → 0)/∂x1(1 → 0), which allows calcu-
lating the system state for which the component 
failure causes that the system is unavailable. The 
parallel procedure for calculation of this derivative 
is shown in Figure 2 in form of flow diagram.

3.2  Minimal cut vectors

There is also another type of system boundary 
states. These boundary states are based on the con-
cept of MCSs. The methods of reliability analysis 
based on MCSs have been considered in papers 
(Shooman 1968, Rosenberg 1996). These methods 
have been developed, for example, by Choi & Cho 
(2007), Yeh (2008) and Soh & Rai (2005).

Shooman (1968) has defined a cut set of a sys-
tem as a set of system components whose simulta-
neous failure leads into the failure of the system 
(if  the system has been functional). A cut set is 
minimal, if  no component can be removed from it 
without losing its status as a cut set.

In the terms of the structure function, a (mini-
mal) cut set can be interpreted by a special state 
vector, which is known as a (minimal) cut vector. 
According to the definition of a cut set, the system 
state for a state vector covered by a cut set is zero. 
Therefore, state vector x is a cut vector if φ(x) = 0.

A state vector that coincides with a MCS is a 
Minimal Cut Vector (MCV). A cut vector x is mini-
mal if φ(y) = 1 for any y > x, where y is a state vec-
tor, for which yi ≥ xi (i = 1, 2, …, n) and there exists 
at least one i such that yi > xi.

So, MCSs, MCVs and exact boundary states 
agree with system boundary states, but every of 
these concepts have some specifics:

–	 exact boundary state vectors define situations in 
which the skip down/repair of the i-th compo-
nent causes the system failure/repair.

–	 MCSs agree with situations in which simultane-
ous failure of one or more components leads 
into the failure of the system.

–	 MCVs correspond to state vectors in which the 
renewal of any failed components causes the 
system renewal.

For example, the service system in Figure 1 with 
the structure function presented in Table  1 has 

Figure 1.  A simple service system.

Table 1.  The structure function 
of the simple service system.

Components states x3

x1 x2 0 1

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

Table  2.  The components states prob-
abilities of the simple service system.

Components states

x1 x2 x3

pi 0.90 0.70 0.65
qi 0.10 0.30 0.35



1426

2 MCVs x =  (x1, x2, x3) =  (0,1,1) and x =  (x1, x2, 
x3) = (1,0,0).

In Table 4, exact boundary state vectors (critical 
cut vectors) and MCVs are presented for this sys-
tem. And we can see that these two groups include 
different state vectors. Therefore, there are two 
types of boundary states of the system that agree 
with different conditions and that are defined by 
different types of boundary states vectors.

Therefore, the algorithms for calculation of 
different boundary states of  the system are not 
similar and are based on analysis of  specific con-
dition of  the system criticality. These types of 
boundary states are used for calculation of  differ-
ent reliability indices. IMs are one group of  these 
indices. In papers (Zaitseva 2013, Zaitseva et  al. 
2015) the application of  exact boundary states for 
calculation of  structural importance, Birnbaum 
importance and criticality importance has been 
considered. But, the calculation of  FVI based 
on this approach is not possible because FVI is 
defined based on the concept of  MCSs or MCVs 
(Kuo & Zhu 2012).

Table  4.  MCVs of the simple 
service system.

Critical cut vector MCVs

(0,0,1)
(0,1,0) (0,1,1)
(0,1,1) (1,0,0)
(1,0,0)
(1,0,0)

Figure 2.  Calculation of the DPLD ∂φ(1 → 0)/∂x1(1 → 0).

Table 3.  DPLDs for the structure function of the simple service system.

x2 x3

∂ →
∂ →

φ( )
( )
1 0
1 01x x1 x3

∂ →
∂ →

φ( )
( )
1 0
1 02x x1 x2

∂ →
∂ →

φ( )
( )
1 0
1 03x

0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0
1 0 1 1 0 1 1 0 1
1 1 1 1 1 0 1 1 0

4  Fussell-Vesely Importance 
based on Logical Differential 
Calculus

4.1  Fussell-Vesely importance and minimal  
cut vectors

The FVI is one of the most commonly used IMs. It 
quantifies the contribution of a system component 
to system failure. This IM is based on MCSs and, 
taking into account the relation between MCSs 
and MCVs, it can be computed as follows (Kvassay 
et al. 2015):

FVI
Ui

i i=
∃ ∈ ≤{ }Pr ( ) ; ( )

,
MCV MCVs MCV0 0x

� (7)

where MCVs  is a set of all MCVs of the sys-
tem, MCV(0i) is a MCV in which xi = 0, the event 
∃ ∈ ≤{ }MCV MCVs MCV( ) ; ( )0 0i ix  means that 

there is at least one MCV with xi = 0 that is greater 
than or equal to an arbitrary state vector x, and U 
is system unavailability (5).

The structural version of the FVI of component 
i (Kuo & Zhu 2012) can be defined as the relative 
number of cut vectors that are less than or equal to 
at least one MCV containing component i in state 0:

SFVIi
i i=

∃ ∈ ≤{ }
={ }

MCV MCVs MCV( ) ; ( )
: ( )

,
0 0

0
x

x xφ
	 (8)

Kvassay et al (2015) have proposed an algorithm 
for calculation of the FVI based on DPLDs. This 
algorithm requires computation of conjunction of 
a special type of DPLDs that are called expanded 
DPLDs. Another way is to develop a definition 
of the FVI that will be based directly on DPLD 
∂ → ∂ →φ( ) ( )0 1 0 1xi  and then compute the FVI 
without the need to compute DPLDs conjunction 
and identify MCVs from it. Now, we concentrate 
on this approach.

4.2  Fussell-Vesely importance based on minimal 
cut vectors and direct partial logic derivatives

Consider a system of n components and DPLD 
∂ → ∂ →φ( ) ( )0 1 0 1xi  for some i n∈{ }1 2, , , .…
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Specially, this derivative is defined only for 
state vectors (0i,  x) of the structure func-
tion, therefore, nonzero values of expression 
x xi i∂ → ∂ →φ( ) ( )0 1 0 1  agree with critical cut vec-
tors for component i.

Next, recall that a MCV corresponds to a situ-
ation in which a repair of  any failed component 
results in system repair. Therefore, a MCV can 
be defined as a cut vector that is critical for all 
components that are failed, i.e. that are in state 0. 
According to definition (7) of  the FVI of  compo-
nent i, only MCVs that contain component i in 
state 0 are needed to compute the FVI based on 
MCVs. This implies that definition (7) requires 
only MCVs that have form of (0i,  x). Accord-
ing to the meaning of  a MCV, these MCVs are 
also critical cut vectors for component i. Based 
on the previous paragraph, these critical cut vec-
tors correspond to nonzero elements of  expres-
sion x xi i∂ → ∂ →φ( ) ( )0 1 0 1 . Now, we only need 
to identify which elements (state vectors) of  this 
expression are MCVs.

Consider two critical cut vectors (0i, x) and (0i, y) 
for component i and assume that (0i, x) <  (0i, y). 
The fact that these vectors are cut vectors implies 
that φ(0i, x) = 0 and φ(0i, y) = 0. However, this also 
implies that the state vector (0i,  x) cannot be a 
MCV because there exists at least one state vec-
tor, i.e. the state vector (0i, y), that is greater than 
the state vector (0i, x) and that is also a cut vector. 
Following this fact, if  we know all critical cut vec-
tors for component i, then MCVs can only be the 
maximal ones. Please note that a critical cut vec-
tor (0i, x) is maximal if  no other critical cut vector 
(0i, y) that satisfies relation (0i, x) < (0i, y) exists, e.g. 
the simple service system in Figure  1 has 3 criti-
cal cut vectors for the first component, i.e. (0,0,1), 
(0,1,0), and (0,1,1) (see Table 4), and the maximal 
one is (0,1,1) because both others are less than this 
one (in terms of relation “<” defined on the set of 
all system state vectors). Therefore, every MCV of 
the form (0i, x) corresponds to a maximal critical 
cut vector for this component.

Next, we need to show that every maximal criti-
cal cut vector for component i also corresponds to 
a MCV of the form of (0i, x), i.e. that there exists 
one-to-one correspondence between MCVs of the 
form of (0i,  x) and maximal critical cut vectors 
for component i. For this purpose, assume that 
critical cut vector (0i,0k, x) is a maximal critical cut 
vector for component i but not a MCV because 
φ(0i,1k,  x)  =  0. This implies that φ(0i,0k,  x)  =  0 
and φ(1i,0k, x) = 1. Next, the coherency implies that 
φ(1i,1k, x) = 1. This means that state vector (0i,1k, x) 
is a critical cut vector. But, this is a contradiction 
with the assumption that state vector (0i,0k, x) is a 
maximal critical cut vector for component i. There-
fore, every maximal critical cut vector for compo-
nent i also corresponds to a MCV of the form of 

(0i, x). These results can be concluded in the form 
of the next theorem and corollary.

Theorem. A state vector (0i,  x) is a MCV iff  
it is a maximal state vector for which expression 
x xi i∂ → ∂ →φ( ) ( )0 1 0 1  has nonzero value.

Corollary. Consider a coherent system of n 
components with the structure function φ(x). A set 
of all MCVs of the form of (0i, x) corresponds to 
the following set:

max ( )
( )

.
{ , }

argone
x∈

∂ →
∂ →










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



0 1

0 1
0 1n

x
xi

i

φ
	 (9)

Please note that the function argone(.) in (9) 
identifies all state vectors for which the expression 
x xi i∂ → ∂ →φ( ) ( )0 1 0 1  has nonzero value, i.e. crit-
ical cut vectors for component i, while the function 
max{.} takes the maximal ones from them in terms 
of relation “<” defined on the set of all system state 
vectors.

Using the Corollary, the FVI (7) can be rewrit-
ten as follows:

FVI

x
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Next, define a special function fi
− ( )x  of  n vari-

ables where i n∈{ }1 2, , ,…  as follows:

f

x
x
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i
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Clearly, this function has value 1 for a vector x 
if  at least one MCV that is greater than or equal to 
the state vector x exists in the set (9) of all MCVs 
that contain component i in state 0, and it has value 
0 if  no such MCV exists in the set. Definition (11) 
implies that the function fi

− ( )x  has a property that 
f fi i

− −≥( ) ( )x y  if  x < y, therefore, it can be inter-
preted as a negative i.e. non-increasing, Boolean 
function. It is also possible to show that definition 
(10) is equivalent with the next one:

f
x

xi
i

in
−

∈=
∃ ∈

∂ →
∂ →





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

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
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0 10 1
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0    else                                                        
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



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,

� (12)
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which states that the function fi
− ( )x  has value 1 

for a state vector x if  and only if  the expression 
x xi i∂ → ∂ →φ( ) ( )0 1 0 1  is nonzero for at least one 
state vector that is greater than or equal to the state 
vector x. Formula (12) corresponds to the defini-
tion of the minimal negative function for Boolean 
function x xi i∂ → ∂ →φ( ) ( ).0 1 0 1  (Please note that 
the minimal negative function for a Boolean func-
tion is a non-increasing Boolean function that can 
be created from the considered function in such a 
way that we change value of the considered func-
tion to value 1  in the minimal number of points 
at which the considered function takes value 0.) 
Therefore, the function fi

− ( )x  can be expressed as 
follows:

f x
xi i

i

− =
∂ →
∂ →







( ) ( )
( )

,x MNF φ 0 1
0 1

	 (13)

where MNF(.) denotes the minimal negative 
Boolean function created from a Boolean func-
tion occurring in the argument. If  we look at the 
numerator in definition (10) of the FVI, then we 
can recognize that it corresponds to the probabil-
ity that the minimal negative Boolean function for 
the expression x xi i∂ → ∂ →φ( ) ( )0 1 0 1  is nonzero. 
Therefore, the FVI can be expressed based on 
DPLDs as follows:
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Using the similar approach, it can be shown that 
the SFVI (8) can be defined as a relative number 
of cut vectors for which the Boolean expression 
MNF ( ) ( )x xi i∂ → ∂ →( )φ 0 1 0 1  is nonzero:

SFVI

x
x

i

i
i=

∂ →
∂ →





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=











={ }

x

x x

:MNF

: ( )

  

φ

φ

( )
( )
0 1
0 1

1

0

         
TD MNF

TD ( )
=

∂ →
∂ →





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






( )
x

xi
i

φ

φ

( )
( )
0 1
0 1

x
	 (15)

where x x: ( )φ ={ }0  is a set of all system cut vectors, 
x : MNF ( ) ( )x xi i∂ → ∂ →( ) ={ }φ 0 1 0 1 1  is a set of 

all state vectors for which the minimal negative 
Boolean function for x xi i∂ → ∂ →φ( ) ( )0 1 0 1  is 
nonzero (according to the previous text, every state 
vector of the minimal negative Boolean function 

corresponds to a cut vector of the system), |.| 
denotes the size of the considered set, and TD(.) 
denotes the truth density of the argument inter-
preted as a Boolean function (it corresponds to 
a relative number of points in which the Boolean 
function takes value 1).

4.3  Hand calculation example

As an example to illustrate the calculation of the 
FVI measures using DPLDs, consider the simple 
service system in Figure 1, whose structure func-
tion is in Table 1. This function can be interpreted 
as a Boolean function φ( )x = ∨x x x x1 2 1 3. In the 
firs step, DPLDs ∂ → ∂ →φ( ) ( )0 1 0 1xi  have to 
be computed for all system components, i.e. for 
i = 1, 2, 3, to find values of the FVI of individual 
system components. These derivatives are in the 
second row of Table 5. Next, identify expressions 
x xi i∂ → ∂ →φ( ) ( )0 1 0 1 . This is done simple by 
expanding individual DPLDs using literal xi  (the 
third row of Table 5). When these expressions are 
known, then transform them in the form of the 
minimal negative Boolean functions (the fourth 
row of Table  5), which are used in definitions 
(14) and (15) of the FVI and SFVI respectively. 
For example, consider component 1 of the sys-
tem. DPLD ∂ → ∂ →φ( ) ( )0 1 0 11x  is calculated 
as x x2 3∨ , and its conjunction with literal x1 has 
the form of x x x x1 2 1 3∨ . Since this expression cor-
responds to a disjunctive normal form, the corre-
sponding minimal negative Boolean function can 
be obtained simply by removing all positive liter-
als, i.e. x2 and x3. So, the minimal negative Boolean 
function for the expression x x1 10 1 0 1∂ → ∂ →φ( ) ( ) 
has the form of x1.

When the minimal negative Boolean func-
tion for the expression x xi i∂ → ∂ →φ( ) ( )0 1 0 1  is 
known, then the SFVI of  the i-th system compo-
nent can be computed as a quotient of  the truth 
densities of  the minimal negative Boolean func-
tion and the negation of  the structure function. In 
the considered system, the negation of  the struc-
ture function has the form of  x x x1 2 3∨  and, there-
fore, its truth density is 0.625. Next, for example, 
the truth density of  the minimal negative Boolean 
function for expression x x1 10 1 0 1∂ → ∂ →φ( ) ( ) 
is 0.5. This implies that the SFVcI of  the 1-st 
component is computed as 0.5/0.625  =  0.8. For 
other system components, the truth densities 
of  minimal negative functions for expressions 
x xi i∂ → ∂ →φ( ) ( )0 1 0 1  are presented in Table  5 
and the final values of  the SFVI are in Table 6. 
If  we have information about availabilities of 
individual system components (Table  2), then 
we can also compute the FVI of  individual sys-
tem components. This computation is also based 
on the minimal negative Boolean functions for 
expressions x xi i∂ → ∂ →φ( ) ( )0 1 0 1 . For example, 
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Table  5.  DPLDs, the corresponding minimal negative functions, and 
their truth densities for the system in Figure 1.

Components

x1 x2 x3

∂ →
∂ →
φ( )

( )
0 1
0 1xi

x x2 3∨ x x1 3 x x1 2

x
xi

i

∂ →
∂ →

φ( )
( )
0 1
0 1

x x x x1 2 1 3∨ x x x1 2 3 x x x1 2 3

MNF x
xi

i

∂ →
∂ →







φ( )
( )
0 1
0 1

x1 x x2 3 x x2 3

TD MNF x
xi

i

∂ →
∂ →













φ( )
( )
0 1
0 1

0.50 0.25 0.25

Table 6.  Fusell-Vesely’s measures for the system.

Components

x1 x2 x3

Pr
( )
( )

MNF x
xi

i

∂ →
∂ →

=














φ 0 1
0 1

1
0.1000 0.1050 0.1050

FVI 0.5141 0.5398 0.5398
SFVI 0.80 0.40 0.40

if  we want to quantify the contribution of  the 
1-st component to system failure, then we can 
calculate it as a quotient of  the probability that 
the minimal negative Boolean function for the 
expression x x1 10 1 0 1∂ → ∂ →φ( ) ( ) is nonzero, i.e. 
0.1, and the probability that the system is unavail-
able, i.e. 0.1945. Therefore, the FVI of  component 
1 has value 0.5141. Similarly, we can compute the 
FVI for other two components of  the system 
(see Table 6). The values of  the FVI presented in 
Table 6 indicate that the 1-st component has the 
most contribution to system failure from topolog-
ical point of  view while if  we take into account the 
availabilities of  individual system components, 
then the 2-nd and 3-rd component contribute 
more than the 1-st one. These results are caused 
by two facts. Firstly, from topological point of 
view, a failure of  component 1 ensures that the 
system will be unavailable regardless of  states of 
other two components while a failure of  the 2-nd 
(3-rd) component can contribute to system failure 
if  and only if  the 3-rd (2-nd) component is una-
vailable. On the other hand, the 1-st component is 
more reliable than other two components together 
because its failure is less probable (its unavailabil-
ity is 0.1) than a failure of  other two components 

(their joint unavailability is 0.105). Therefore, if  
the availabilities of  individual system components 
are considered, then the 2-nd and 3-rd component 
have the most contribution to system failure.

5  Conclusions

The principal result of  this paper is development 
of  mathematical approach of  DPLDs for the cal-
culation of  MCVs. Mathematical background for 
this development is considered and used for new 
definition of  FVI measure (7) and (8). The new 
definitions (14) and (15) are based on DPLDs 
and they require no a priori knowledge of  MCSs 
or MCVs. The proposed method is explained in 
the hand calculation example (it is the system in 
Fig. 1). The next step of  the investigation will be 
comparison of  this method with other ones that 
are used for calculation of  FVI, e.g. Kuo & Zhu 
(2012) and Kvassay et al. (2015). The preliminary 
examination of  algorithm presented in (Kvas-
say et  al. 2015) and new algorithm in this paper 
permits supposing that time complexity of  new 
algorithm for analysis of  the system will be less in 
n times approximately (n is number of  the system 
components) because the algorithm in (Kvassay 
et al. 2015) is based on the calculation of  DPBDs 
for all variables of  the system structure function. 
New algorithm is based on the computation of 
only one derivative for analysed variable of  the 
structure function.
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